Executive function and high ambiguity perceptual discrimination contribute to individual differences in mnemonic discrimination in older adults

Helena M. Gellersen¹, Alexandra N. Trelle¹,², Richard N. Henson³, & Jon S. Simons¹

¹Department of Psychology, University of Cambridge, Cambridge, UK
²Department of Psychology, Stanford University, Palo Alto, USA
³MRC Cognition and Brain Sciences Unit, and Department of Psychiatry, University of Cambridge, UK

Correspondence should be addressed to Prof. Jon Simons, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK. E-mail: jss30@cam.ac.uk. Phone: +44 1223 333566. Fax: +44 1223 764760.

Declarations of interest: none.

Author note: This research was supported by the BBSRC [grant number BB/L02263X/1], and was carried out within the University of Cambridge Behavioural and Clinical Neuroscience Institute, funded by a joint award from the Medical Research Council and the Wellcome Trust. H.M.G. was supported by a Medical Research Council scholarship, R.N.H. by Medical Research Council programme grant SUAG/046 G101400, and J.S.S. by James S. McDonnell Foundation Scholar award #220020333. The funders had no role in the conceptualisation, analysis or publication of this data. The study was conducted at the Behavioural and Clinical Neuroscience Institute (BCNI) and the MRC Cognition and Brain Sciences Unit (CBU) at the University of Cambridge. The authors would like to thank the funders for their support of their research. Special thanks go to Priyanga Jeyarathnarajah, Sarah Fox and Megan Thomson for help with data collection, to Mark Haggard for advice on data analysis, and to Morgan Barense for sharing task stimuli. Preliminary results of this study have been presented at the following conferences: Aging of Memory Functions, 2018, Bordeaux, France; Cognitive Neuroscience Society Annual Meeting, 2019, San Francisco, United States; Cambridge Memory Meeting, 2020, Cambridge, United Kingdom.
Running head: Individual differences in false recognition in ageing

Abstract
Mnemonic discrimination deficits, or impaired ability to discriminate between similar events in memory, is a hallmark of cognitive ageing, characterised by a stark age-related increase in false recognition. While individual differences in mnemonic discrimination have gained attention due to potential relevance for early detection of Alzheimer’s disease (AD), our understanding of the component processes that contribute to variability in task performance across older adults remains limited. The present investigation explores the roles of representational quality, indexed by perceptual discrimination of objects and scenes with overlapping features, and strategic retrieval ability, indexed by standardized tests of executive function, to mnemonic discrimination in a large cohort of older adults (N=124). We took an individual differences approach and characterised the contributions of these factors to performance under Forced Choice (FC) and Yes/No (YN) recognition memory formats, which place different demands on strategic retrieval. Performance in both test formats declined with age. Accounting for age, individual differences in FC memory performance were best explained by perceptual discrimination score, whereas YN memory performance was best explained by executive functions. A dominance analysis confirmed the relatively greater importance of perceptual discrimination over executive functioning for FC performance, while the opposite was true for YN. These findings highlight parallels between perceptual and mnemonic discrimination in aging, the importance of considering demands on executive functions in the context of mnemonic discrimination, and the relevance of test format for modulating the impact of these factors on performance in older adults.
Running head: Individual differences in false recognition in ageing

Key words: ageing, individual differences, mnemonic discrimination, perceptual discrimination, executive function
Introduction

Aging is associated with impairments in mnemonic discrimination, or the ability to distinguish between events in memory that share overlapping features (Stark, Yassa, Lacy, & Stark, 2013). Specifically, older adults are more likely than younger adults to incorrectly endorse novel items as previously studied when they are perceptually similar to studied items (i.e., ‘lures’) but not when they are distinct (i.e. novel foils; Stark & Stark, 2017; Stark, Stevenson, Wu, Rutledge, & Stark, 2015; Trelle, Henson, Green, & Simons, 2017). Age-related differences in mnemonic discrimination have gained considerable interest, and this pattern of impairment has been well-documented by many different groups (Pidgeon & Morcom, 2014; Reagh et al., 2016; Stark & Stark, 2017; Stark et al., 2015; Trelle et al., 2017). In large part, this interest has been due to potential utility of mnemonic discrimination tasks for detecting early changes in the brain associated with preclinical Alzheimer’s disease (Berron et al., 2019; Maass et al., 2019; Rentz et al., 2013; Stark, Kirwan, & Stark, 2019; Stark et al., 2013; Webb, Foster, Horn, Kennedy, & Rodrigue, 2020). This idea emerged from observations that performance relies critically on the hippocampus and adjacent entorhinal and perirhinal cortex (Reagh et al., 2018; Reagh & Yassa, 2014), brain areas that are among the earliest affected by neurofibrillary tangle pathology (Braak & Braak, 1991). Despite growing interest in individual differences in mnemonic discrimination performance, which may be clinically meaningful, our understanding of the component processes that contribute to variability in performance across older adults remains limited. Here we focus on two candidate factors: the ability to form detailed representations of items to allow for differentiation of highly similar targets and lures, and the ability to strategically retrieve these details (Trelle et al., 2017). We further contrast their relative contributions to individual differences in mnemonic discrimination as a function of test format.
Existing work exploring individual differences in mnemonic discrimination in cognitively unimpaired older adults have primarily described the impact of hippocampal integrity on performance (Bennett, Stark, & Stark, 2019; Stark et al., 2019) and have shown that delayed recall tests are related to mnemonic discrimination performance (Migo et al., 2014; Toner, Pirogovsky, Kirwan, & Gilbert, 2009; Trelle et al., 2017). While this work has provided important initial insights into factors that contribute to individual differences in mnemonic discrimination in older adults, few studies have examined factors beyond hippocampal-dependent processes (e.g., pattern separation and pattern completion) that may give rise to elevated rates of lure false recognition with age.

MTL does not act in isolation to support mnemonic processes. The prefrontal cortex (PFC) supervises the MTL system during memory encoding and retrieval (Simons & Spiers, 2003), supporting goal-directed attention, selection, and inhibition processes, as well as the maintenance and evaluation of retrieved features in working memory (Badre & Wagner, 2007; Blumenfeld & Ranganath, 2007). PFC-mediated executive functions are affected by age and increases in false recognition have been linked to age-related changes in prefrontal cortex function (Devitt & Schacter, 2016; Guerin, Robbins, Gilmore, & Schacter, 2012; McDonough, Wong, & Gallo, 2013; Nyberg, 2017; Schacter & Slotnick, 2004; Straube, 2012). For instance, older adults are impaired in engaging in ‘recall-to-reject’ (Migo, Montaldi, Norman, Quamme, & Mayes, 2009; Trelle et al., 2017), a cognitively demanding retrieval strategy that plays a key role in minimising false recognition by recalling specific item features of the study episode that can be compared to those of similar lures in order to reject them as novel (Cohn, Emrich, & Moscovitch, 2008; Gallo, 2004; Gallo, Bell, Beier, & Schacter, 2006). Thus, individual differences in cognitive control of memory necessary to support recall-to-reject may also impact mnemonic discrimination ability. However, prior work investigating the role of executive functions on mnemonic discrimination is mixed, with
some studies failing to identify effects (Davidson, Vidjen, Trincao-Batra, & Collin, 2019; Toner et al., 2009) and others suggesting executive functions may play a role when the test format posed demands on strategic retrieval (Foster & Giovanello, 2020; Trelle et al., 2017). Notably, however, these studies had relatively small samples (20-40 older adults) and focused on group comparisons. The degree to which individual differences in executive functions impact mnemonic discrimination in older adults therefore remains unclear.

Importantly, age-related increases in false recognition are also observed in experimental conditions in which demands on controlled retrieval processes are minimized (Trelle et al., 2017; Yeung, Ryan, Cowell, & Barense, 2013), and age-dependent impairments in object discrimination even exist outside the realm of episodic memory tasks, such as in perceptual oddity tasks (Burke et al., 2018; Burke, Ryan, & Barnes, 2012; Newsome, Duarte, & Barense, 2012; Ryan et al., 2012). As in memory studies, age-related impairment in perceptual discrimination tasks are observed specifically under conditions in which targets and foils share overlapping features (i.e., conditions of high feature ambiguity), but not when they are distinct, and therefore can be distinguished on the basis of simple features. Notably, prior evidence from neuroimaging, patients with MTL lesions, and non-human primates indicates that perceptual discrimination under conditions of high feature ambiguity relies critically on regions within the MTL (Barense, Henson, Lee, & Graham, 2010; Bussey & Saksida, 2002, 2005; Kent, Hvoslef-Eide, Saksida, & Bussey, 2016; Lee et al., 2005; Lee, Yeung, & Barense, 2012; Murray & Bussey, 1999). Collectively, this work suggests that common representations may support both perceptual and mnemonic tasks that involve resolving interference between stimuli with overlapping features, and that aging may reduce the availability of these representations (Barense et al., 2012; Bussey & Saksida, 2005; Kent et al., 2016; Newsome et al., 2012). Thus, performance on perceptual discrimination (PD) tasks may provide an index of representational quality, or individual differences in the ability
to form representations that can disambiguate stimuli with overlapping features. However, work exploring the relationship between complex perceptual discrimination and mnemonic discrimination is extremely limited (Trelle et al., 2017), and no studies to date have examined continuous relationships between these factors in a large sample of older adults.

Although multiple factors may contribute to false recognition with age, their relative contribution to performance may differ depending on how memory is tested. Specifically, multiple test formats have been used to assess false recognition of similar lures. The first, and most commonly adopted, is the format in which a single probe is presented, either a target, a similar lure or an unrelated foil, and individuals judge its study history. In the paradigm presented in our study we refer to this test format as ‘Yes/No’ (YN), where participants answer to the question whether the probe was previously seen (‘yes’) or novel (‘no’).

Alternatively, memory performance can also be assessed using a Forced Choice (FC) test, in which targets and corresponding lures are presented simultaneously.

Critically, prior work indicates that rates of false recognition across older and younger adults are reduced considerably in the FC format (Guerin, Robbins, Gilmore, & Schacter, 2012; Migo et al., 2009; Trelle et al., 2017). Existing evidence suggests that this is due, in part, to reduced demands on the hippocampus (Holdstock et al., 2002; Norman, 2010) and PFC-dependent recall-based retrieval strategies (e.g., recall-to-reject) when targets and corresponding foils are presented together (Migo et al., 2009; Trelle et al., 2017). Consistent with this possibility, prior work in older adults has demonstrated that the relationship between neuropsychological tests of recall and recognition differs as a function of test format (Migo et al., 2014). Specifically, whereas recall explained variance in performance when targets and lures were presented individually, measures of recognition predicted performance when targets and corresponding lures were presented side by side. Taken together, this work
suggests that test format impacts the accessibility of stimulus representations, perhaps by
modulating demands on strategic retrieval processes (Trelle et al., 2017).

In the present study, we examine the relative contributions of individual differences in
high ambiguity perceptual discrimination, indexing representational quality, and executive
function, indexing the ability to engage strategic retrieval processes, to mnemonic
discrimination performance in a large cohort of older adults, and assess whether the
contribution of each factor varies as a function of test format. We assayed the integrity of
complex perceptual representations using perceptual oddity tasks that involve disambiguating
objects and scenes with overlapping features, which have been used in patient and
neuroimaging work exploring MTL contributions to perception (Barense et al., 2010; Lee et
al., 2005). In accordance with prior studies on cognitive ageing, executive functions were
indexed using traditional neuropsychological tests, including those measuring working
memory, task switching, inhibition, and semantic fluency (Davidson & Glisky, 2002; Glisky,
Rubin, & Davidson, 2001; Trelle et al., 2017).

We first sought to replicate the previously reported age-group differences in memory
performance across task formats (Trelle et al., 2017) and in perceptual discrimination
accuracy under conditions of high feature ambiguity (Ryan et al., 2012) by comparing older
adults’ performance to a group of healthy younger adults. Second, we sought to characterise
relationships between perceptual discrimination, executive function, and memory
performance in each test format among older adults, controlling for effects of age. We
predicted that perceptual discrimination performance would be sufficient to explain Forced
Choice performance, whereas Yes/No performance would be primarily influenced by
individual differences in executive function, due to greater demands on strategic retrieval
processes in the Yes/No task. We significantly add to prior work by simultaneously
considering the influence of perception and executive function on individual differences in mnemonic discrimination.

Methods

Participants. Fifty-two younger adults (32 female) aged 18 to 35 ($M=23.0, SD=3.85$) and 124 cognitively unimpaired older community-dwelling adults aged 60 to 87 ($M=70.3, SD=5.39$; $n=75$ female) participated in this study. Participants were native English speakers, had normal or corrected to normal vision, and no history of diagnosed psychiatric or neurological conditions. Volunteers provided written informed consent for participation in a manner approved by the Cambridge Psychology Research Ethics Committee. All volunteers were reimbursed for their time.

All older adults performed within the normal range (≥ 26) on the Montreal Cognitive Assessment (MoCA) screening tool for cognitive impairment (Damian et al., 2011; Nasreddine et al., 2005). We used the Memory Functioning Questionnaire (MFQ) to obtain a measure of subjective memory complaints among older adults (Gilewski, Zelinski, & Schaie, 1990). We focused on subscales that describe the frequency (32 items) and seriousness of forgetting (18 items) on a 7-point Likert scale, where 1 corresponded to serious problems and 7 to no problems at all. Older adults reported only moderate cases of forgetting in terms of frequency and seriousness (see Table 1 for details). Thus, no participants were excluded on the basis of objective or subjective cognitive impairment, and the present sample was deemed cognitively unimpaired.

Older and younger adults did not differ in terms of years of education ($t<1, p>.4$). However, older adults had higher crystallised IQ as measured using the Vocabulary test of the Shipley Institute of Living Scale (Shipley, 1986; $t(35.87)=-5.00, p<.001, d=1.51$) and the National Adult Reading Test (NART; Nelson & Willison, 1991; $t(156)=-6.95, p<.001$,
Running head: Individual differences in false recognition in ageing

\[d=1.35 \). Note that only a subsample of younger adults completed the full battery of neuropsychological tests (n=34).

Table 2. Memory and perception scores by age group.

<table>
<thead>
<tr>
<th></th>
<th>Younger adults</th>
<th>Older adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory scores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forced Choice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>.84 (.07)</td>
<td>.76 (.08)</td>
</tr>
<tr>
<td>Yes/No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hits</td>
<td>.80 (.10)</td>
<td>.83 (.10)</td>
</tr>
<tr>
<td>False Alarms</td>
<td>.35 (.13)</td>
<td>.54 (.13)</td>
</tr>
<tr>
<td>Correct Rejections</td>
<td>.65 (.13)</td>
<td>.46 (.13)</td>
</tr>
<tr>
<td>Misses</td>
<td>.20 (.10)</td>
<td>.17 (.10)</td>
</tr>
<tr>
<td>Perceptual discrimination accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object Low</td>
<td>.98 (.03)</td>
<td>.98 (.34)</td>
</tr>
<tr>
<td>Object High</td>
<td>.82 (.09)</td>
<td>.65 (.13)</td>
</tr>
<tr>
<td>Scene Low</td>
<td>.97 (.04)</td>
<td>.94 (.06)</td>
</tr>
<tr>
<td>Scene High</td>
<td>.89 (.09)</td>
<td>.78 (10)</td>
</tr>
<tr>
<td>Discrimination composite*</td>
<td>.88 (.78)</td>
<td>-.25 (.91)</td>
</tr>
</tbody>
</table>

*Mean score of corrected object and scene discrimination scores (High-Low ambiguity).

Recognition memory

Materials. The recognition memory task is summarized in Figure 1a. Stimuli were 200 colour exemplar pairs of objects (a total of 400 images) obtained from online sources, including Google Image Search (Mountain View, CA) and publicly available stimulus sets (e.g., http://konklab.fas.harvard.edu). Each pair consisted of two images with high feature overlap that depicted the same type of object (e.g. “abacus”, “backpack”). Foils and targets could not
be distinguished on the basis of conceptual representations or single features (shape, colour, pattern). Rather, discriminating exemplars relies on high fidelity representations of each object. Similarity ratings for exemplar pairs by an independent set of participants were used to create stimulus lists matched on average target-foil perceptual similarity. The assignment of lists to either task format (Forced Choice or Yes/No) was counterbalanced across participants.

Procedure. After providing written informed consent, volunteers began with a practice block for the recognition memory tests that provided feedback on their performance. Following successful completion of the practice task, participants moved on to complete two blocks of the study phase presenting 100 images per block for 3000 ms each. To direct attention to the features of the objects and ensure that all participants engaged in similar processing, participants were asked to make a Bigger/Smaller size judgment of the objects (‘Is the object bigger/smaller than a shoe box?’). Participants pressed the ‘z’ key for bigger and ‘m’ for smaller.

Before the test phase, participants were asked to count backwards from a three-digit number in steps of seven for 60 seconds. The order of Yes/No (YN) and Forced Choice (FC) test format was counterbalanced across participants. Each test format comprised 100 trials. For the FC format, target and foil of a stimulus pair were presented at the same time. Participants were asked to endorse either the stimulus on the left- (‘z’ key) or the right-hand (‘m’ key) side of the screen as old. In the YN format, either the target or the foil stimulus was shown in isolation and participants were asked if the item on the screen was old, which they expressed with the ‘z’ key for ‘yes’ or ‘m’ key for ‘no’. Whether the target or the respective foil of a stimulus pair was shown was counterbalanced across participants.
Figure 1. Schematic of the experimental paradigms. (a) Recognition memory task. During study, participants were shown objects and made a size judgment for each object (top). In the test phase (bottom), target and foil were either presented simultaneously (Forced Choice task), or either the target or the foil object was shown (Yes/No task). (b) Example of a trial of the high ambiguity object discrimination task. Red circles were not present in the actual task and are used here to illustrate which feature was different in the respective trial. (c) Example of a trial of the high ambiguity scene discrimination task.
Scoring. We computed the discriminability index d' to quantify the separation between distributions for old and new items and allow comparison between YN and FC tasks (Bayley, Wixted, Hopkins, & Squire, 2008; Trelle et al., 2017). d' was calculated from the proportion of correct responses in FC and from the proportion of hits and false alarms in the YN task. In cases where the proportion would have been 0 or 1, we applied a correction to avoid a d' of infinity: 0% misses were recoded as $1/(2N)=.005$ and 100% hits as $1-1/(2N)=.995$ with N referring to the number of trials (MacMillan & Creelman, 1991).

Perceptual discrimination

Participants completed two perceptual discrimination (oddity) tasks, one for novel object and one for scenes.

Materials. The perceptual discrimination tasks included computer-generated scene and object (greebles) stimuli, which have been used before to examine medial temporal lobe involvement in complex perceptual processing (objects from Barense, Gaffan, & Graham, 2007; scenes from Lee et al., 2005). The use of novel objects (greebles) and scenes meant that stimuli were unfamiliar to participants and did not carry semantic associations. Each stimulus display consisted of either three objects or three scenes (Figure 1b, c). In the high ambiguity condition, stimuli were shown from different viewpoints and characterised by high feature overlap such that the same basic properties of the scenes or objects, respectively, were found in all exemplars (e.g. greeble body shape and position of appendages; configuration of columns and windows in scenes). In the low ambiguity condition, stimuli were mismatched on basic perceptual features, such that scenes and objects could be distinguished without taking into account conjunction of features and different viewpoints. The low ambiguity
condition served as a control to measure basic perceptual discrimination performance and facilitate interpretation of performance in the high ambiguity condition.

Procedure. Perceptual discrimination tasks were completed after the memory test. The order in which object and scene tasks were completed was counterbalanced across participants. To familiarise participants with the demand on feature conjunctions for the high ambiguity trials, participants completed ten practice trials during which the experimenter pointed out the differences between test exemplars if the participant answered incorrectly. A total of 60 trials were included in each task, 36 of which belonged to the high and 24 to the low ambiguity condition. During the main experiment, participants had 15 seconds to make a response with the keys ‘1’, ‘2’, or ‘3’ to indicate which of the three stimuli (top, bottom left, or bottom right, respectively) they believed to be different. Timed out trials were marked as incorrect.

Stimuli for recognition and discrimination tasks were presented in MATLAB (Mathworks, Inc., USA) in Cogent 2000 (Cogent 2000 team at the FIL and the ICN and Cogent Graphics by John Romaya at the LON at the Wellcome Department of Imaging Neuroscience).

Scoring. For group comparisons in high ambiguity perceptual discrimination we controlled for possible individual differences in basic perceptual discrimination ability (as indexed by the low ambiguity condition) by computing a standardised difference score (\(z(\% correct \text{ high ambiguity trials} - \% correct \text{ low ambiguity trials})\)). For the regression analyses we aimed to capitalise on information from the two tasks by combining the two high ambiguity discrimination scores into a composite score as the mean of corrected object and scene values.

Executive function
Materials and Procedure. Neuropsychological tests were carried out after memory and perception tests were completed. We used three tests to capture different aspects of executive functioning that could serve as proxy for the ability to engage in strategic retrieval processes: the Digit Span Forward and Backward from the Wechsler Adult Intelligence Scale (Wechsler, 2008), Trails A and B and Verbal Fluency tests from the D-KEFS (Delis, Kaplan, & Kramer, 2001).

Scoring. To index the multifaceted nature of executive functions (EF) as a proxy for strategic retrieval abilities, we created a composite score comprised of z-scores on Trails B (recoded such that higher values reflected better performance), Digit Span Total (forward + backward) and Verbal Fluency, based on their inter-correlations (Supplementary Material, section 1.a; |r| between .2 and .32; all p<.05). Similar strategies have previously been used by other studies (Craik, Eftekhari, Bialystok, & Anderson, 2018; Rhodes & Kelley, 2005; Trelle et al., 2017).

Statistical Analysis
Statistical analysis was carried out using R Studio Version 1.2 (RStudio, Inc., 2013). The key analyses for this publication are shown in a corresponding R Markdown document that is available here as Supplementary Material (abbreviated as Suppl.). All summary data and the full length R Markdown script including all analyses conducted for this publication can be found on the Open Science Framework (https://osf.io/mcyh9/). All software packages used in our analysis are cited in the Markdown script (Suppl., section 8).

Age-group differences in memory, perception and executive function. Age-group effects on neuropsychological test scores were assessed using t-tests with adjustments to the degrees of freedom where Levene’s test revealed heterogeneity. We carried out a mixed ANOVA on memory d’ scores with the between-participants factor of Age Group and Task Format (FC, YN) as a repeated measure. No subjects performed at chance level for the low
ambiguity control condition (Suppl., 5.e.iii). We therefore did not exclude any subjects on the basis of poor low-level perceptual abilities. Differences in the perceptual task were assessed with an independent samples t-test on corrected standardised discrimination scores (high-low ambiguity) for the PD composite as well as for objects and scenes. Removal of univariate and multivariate outliers from these analyses did not alter the results unless specifically reported in the results.

Individual Differences Analyses. We used multiple regression to determine predictors of individual differences in FC and YN d' scores among older adults. We operationalised strategic retrieval as the composite in the executive functioning (EF) scores and representational quality as the composite of high ambiguity object and scene perceptual discrimination (PD), controlled for low ambiguity scores. We chose to use composites for both factors of interest to capitalise on the data related to either executive functioning or perceptual discrimination in order to reduce noise in the predictor variables. We further conducted supplementary analyses to show regression results for analyses with sub-scores of each composite.

Predictors of interest were age, the perceptual discrimination composite and the executive functioning composite score. All models were also tested with sex and years of education as nuisance regressors. All predictors were converted to z-scores to obtain standardised beta regression coefficients. Model selection was done on the basis of complementary data-driven methods and a hypothesis-driven approach. Data-driven methods involved forward and backward stepwise regressions and best subset regressions, which determine the best set of predictors for different model sizes (one predictor to maximum number of predictors, in our case $n=6$). In the first step, data-driven approaches indicated that education and sex made no meaningful contribution to neither the Forced Choice nor Yes/No models (Suppl., 7.a-b.). Both variables were therefore excluded from further detailed model
In the second step we followed up on these results in more detail using hypothesis-driven analyses with predictors of interest being age, perceptual discrimination and executive functioning scores. Finally, we tested whether executive functioning could explain additional variance in the Yes/No scores after controlling for performance on a familiarity-based memory test. This was done in two steps: 1) running a regression model on Yes/No scores using Forced Choice scores as a predictor and then 2) using the residuals from this model as dependent variable in a model with age, EF and PD as predictors.

Model diagnostics. Details for model diagnostics regarding assumptions, outliers and influential cases can be found in Suppl., 7.e. Briefly, we tested whether assumptions of normality of residuals, homoscedasticity and absence of multicollinearity were met. After selection of the best fitting model for YN and FC d' scores, respectively, we tested whether the models were robust to the removal of outliers and influential cases. Influential cases were identified using a set of diagnostics calculated with the influence.measures function in the R stats package (Fox & Weisberg, 2018; R Core Team, 2019; metrics: centred leverage/hat values, Cook's distance, standardised residuals, DFBetas for each predictor, Mahalanobis Distance). Removal of all identified outliers and influential cases did not alter the regression results. Here we present the results from the full sample.

Sensitivity analyses. We tested the robustness of our findings by 1) using the raw memory scores as the outcome variable (with the YN scores defined as (proportion of Hit trials+proportion of Correct Rejection trials)/2; and with proportion of correct trials for FC), 2) using either scene or object corrected scores as predictors instead of the PD composite, and 3) by using the individual subs-scores of the EF composite as predictors.

Relative importance of predictors: Dominance analysis. Exploratory correlation analyses revealed small to moderate correlations between all variables of interest (Forced
Choice, Yes/No, PD, EF, age). While not shown in these figures, it should be noted that there was also a moderate correlation between EF and the PD composites ($r=.329, p<.001$). These inter-correlations highlight the need for a procedure that accounts for the influence of multiple variables to identify the main factors related to individual differences in the two memory formats. Comparing beta coefficients to establish the relative importance of predictors is not recommended when predictors are inter-correlated (Johnson & LeBreton, 2004; as would be expected, the confidence intervals of the beta coefficients for EF and PD derived from bootstrapping overlap: Suppl., 7.f.i-ii).

We therefore chose an alternative method to statistically compare the relative importance of our perceptual discrimination and executive functioning scores as predictors in memory models. We used the R package dominanceanalysis to determine the most influential predictor in each model (Bustos Navarrete & Coutinho Soares, 2020). Dominance analysis provides an intuitive understanding of the contribution of a predictor because it establishes relative importance based on changes in R^2 as a function of adding predictors of interest to a model (Azen & Budescu, 2003; Nimon & Oswald, 2013). The method considers each pair of predictors (e.g. perceptual discrimination and executive functioning) and compares the change in R^2 that can be attributed to a predictor as it is added to each possible subset of the model with 1 to $p=$maximum number of predictors (Budescu, 1993; Chevan & Sutherland, 1991). A predictor is identified as more important than another when it is “chosen over its competitor in all possible subset models where only one predictor of the pair is to be entered” (Azen & Budescu, 2003, p.134).

For instance, in our data the EF score would be considered more important than PD if 1) the model with EF as the only predictor explains more variance in memory performance (d') than a model with PD only, 2) the increase in variance explained in a model with age only vs. a model with age+EF is greater than the increase in variance explained in a model
with age only vs. a model with age+PD, and 3) if the increase in variance explained when adding EF to a model with PD+age is greater than the increase in variance explained when adding the PD regressor to a model with age+EF. If all of these statements are true, the executive functioning predictor has ‘complete dominance’ over the perceptual discrimination predictor because it contributes more variance to the outcome in every sub-model regardless of size.

Bootstrapping over 1000 samples was used to estimate dominance weights and corresponding standard errors for each pair of predictors (Azen & Budescu, 2003). In each bootstrap sample a predictor is given a score of 1 when it explains more variance in the criterion than its competitor (on the basis of the R^2 value calculated in a given bootstrap sample), and a value of 0 when the opposite is true. When neither predictor dominates the other, a value of .5 is given for the comparison. The mean dominance metric across bootstrap samples, the dominance weight, can then take on any value between 0 (predictor A is being dominated completely by predictor A in all samples) and 1 (predictor A dominates over B in all samples). Each pairwise comparison of two predictors receives a dominance weight. One way to statistically determine if one predictor dominates another is by testing if the standard error of the mean dominance weight is above the neutral .5 level. Another is by looking at the proportion of bootstrapped samples that reproduce the pattern of dominance observed in the original sample (more methodological details in Suppl., 7.f.iii.). Here we use both complementary methods to determine generalisability of dominance analysis results.

Results

Age-group differences in memory, high-ambiguity perception and executive function

Age deficits in Forced Choice and Yes/No tests are equivalent. We predicted that older adults would perform worse than younger adults in both tasks and that the Forced Choice test format would lead to better performance than the Yes/No format across
participants (Trelle et al., 2017). Results from the 2 x 2 mixed ANOVAs on recognition memory measures with between-participants factor Group (Young, Old) and within-participants factor Test Format (FC, YN) confirmed both hypotheses. There was a significant main effect of Group showing that younger adults had higher discriminability scores \((F(1,170)=37.88, p<.001, \eta^2_p=.18)\) and a main effect of Format confirming better performance for the FC task \((F(1,170)=16.63, p<.001, \eta^2_p=.09)\). There was no interaction \((F<1)\), indicating that the difference in performance between Forced Choice and Yes/No was of similar magnitude across age groups. Use of proportion correct rather than \(d'\) scores did not affect the results (Suppl., 5.c.). Group means are shown in Table 2 and Figure 2.

Finally, a mixed ANOVA with Group as between-participants factor (Young, Old) and Response Type (Hits, Correct Rejections; \(F(1,170)=54.42, p<.001, \eta^2_p=.24\)) confirmed that age-related differences in the Yes/No test were driven by an increase in false alarms \((t(99.47)=8.53, p<.001, d=1.40)\), whereas hit rate did not differ by age group (although a trend towards higher hit rates in older adults was observed: \(t(95.83)=-1.78, p=.079, d=.30\)).

Age-related differences in high ambiguity perceptual discrimination. We predicted that older adults would be impaired on perceptual discrimination tasks when stimuli shared overlapping features. Independent samples t-test confirmed that older adults had significantly lower composite scores for high ambiguity discrimination controlled for lower-level perceptual processing \((t(152)=6.59, p<.001, d=1.28)\). This age deficit was evident for discrimination of highly similar objects \((t(79.63)=9.12, p<.001, d=1.41)\) and scenes \((t(152)=3.17, p=.002, d=.62)\). In other words, older adults experienced a larger decline in performance compared to younger adults when feature overlap was increased from low to high. Perceptual discrimination scores are shown in Table 2 and Figure 2.

Sensitivity analyses revealed that these effects were not affected by the 15 second time constraint (Suppl., 5.e.iv).
Age-related differences in executive function. We tested for age deficits in the EF composite and its sub-scores. There were a significant difference between young and older adults on the executive functioning composite ($t(154)=-9.48, p<.001, d=1.30$), which was driven by the Trails B score ($t(95.84)=-3.55, p<.001, d=.51$). There was no age effect on Verbal Fluency or Digit Span Total scores ($t(156)<1.5, p>.25$).

Figure 2. (a) Age group differences in Forced Choice and Yes/No d' scores, (b) executive functioning composite score, (c) perceptual discrimination composite score, (d) accuracy in object discrimination under low and high feature ambiguity, (e) accuracy in scene discrimination under low and high feature ambiguity.

Note: One extreme outlier on the object high task in older adults is not shown in the plot. Outliers did not alter the significance of the effects shown here.

***$p<.001$, **$p<.01$
Individual differences in false recognition in older adults

We used multiple regression to examine the relationship between perceptual discrimination, executive function, and individual differences in memory performance on the FC and YN tasks among older adults. The d' scores for each memory task were the dependent variables of interest. The predictors of interest were age, the perceptual discrimination composite score and the executive functioning composite. Correlations between memory, perceptual and executive functions are shown in Figure 3.

* Figure 3. Correlations between variables of interest (Yes/No d', Forced Choice d', Perceptual Discrimination composite score, Executive Functioning composite score). Corrections for multiple comparisons are based on the Holm method.

* $p<.05$, ** $p<.01$, *** $p<.001$
Perceptual discrimination explains individual differences in Forced Choice performance.

We predicted that representational quality, measured using a composite of high ambiguity object and scene discrimination, would be the primary factor explaining individual differences in Forced Choice performance in older adults.

Model selection. Table 3 details the parameters of all models of interest for FC. The control model included age as the only predictor (Model 0). The addition of perceptual discrimination (Model 1) to the control model resulted in significant improvements in fit as assessed using an F-test ($F(1, 110) = 5.15, p = .016$). In contrast, when adding executive functioning to age in Model 2 there was no significant improvement ($F(1, 109) = 2.10, p = .121$).

Table 3. Model coefficients for FC d'.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Model 0</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$F(df)$</td>
<td>R^2_{adj}</td>
<td>$F(df)$</td>
<td>R^2_{adj}</td>
</tr>
<tr>
<td>Age</td>
<td>13.49 (1,111)</td>
<td>.10</td>
<td>10.04 (2,110)</td>
<td>.14</td>
</tr>
<tr>
<td>PD</td>
<td>.24</td>
<td>.10</td>
<td>.016</td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>.14</td>
<td>.09</td>
<td>.127</td>
<td>.09</td>
</tr>
</tbody>
</table>

Note: All models were significant at $p<.001$. $SE=$ standard error of the mean. EF: executive functioning composite; PD: perceptual discrimination composite. "$p<.05$, ""$p<.01$, """$p<.001$.

Comparisons of model fit metrics between candidate models (Table 4) show that Model 1 is favoured by the vast majority of fit metrics. Furthermore, the data-driven approaches also strongly support the addition of the PD predictor as opposed to executive
function (Suppl., 7.a.b). We therefore chose Model 1 as the final model for Forced Choice scores with the regression equation: $FC\ d' = 2.28 - .02*Age + .11*Perceptual\ discrimination$.

Table 4. Comparisons of model fit measures between models of interest for Forced Choice performance.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>AIC</th>
<th>BIC</th>
<th>RMSE</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1 – Model 0</td>
<td>-3.99</td>
<td>-1.26</td>
<td>-.02</td>
<td>.04</td>
</tr>
<tr>
<td>Model 2 – Model 0</td>
<td>-.41</td>
<td>2.32</td>
<td>-.01</td>
<td>.01</td>
</tr>
<tr>
<td>Model 2 – Model 1</td>
<td>3.58</td>
<td>3.58</td>
<td>.01</td>
<td>-.03</td>
</tr>
<tr>
<td>Model 3 – Model 1</td>
<td>.91</td>
<td>3.64</td>
<td>-.01</td>
<td>.00</td>
</tr>
<tr>
<td>Model 3 – Model 2</td>
<td>-2.67</td>
<td>.66</td>
<td>-.02</td>
<td>.03</td>
</tr>
</tbody>
</table>

Note: Metrics for the second model listed are subtracted from the first model. AIC: Akaike Information Criterion. BIC: Bayesian Information Criterion. RMSE: Root Mean Square Error. Positive values for R^2_{adj} indicate that the model on the left-hand side outperformed the model on the right-hand side of the equation (e.g. Model 1 explains more variance than Model 0). Negative values for AIC, BCI and RMSE indicate better fit for the model on the left-hand side of the equation. Model 0: age. Model 1: age, perceptual discrimination. Model 2: age, executive functioning. Model 3: age, perceptual discrimination, executive functioning.

Sensitivity analyses. When scores on the individual discrimination tasks were used in the FC model together with age, both object and scene corrected scores were significant predictors of Forced Choice d' scores (object high corrected: $\beta = .214, SE = .096, p = .027$; scene high corrected: $\beta = .182, SE = .091, p = .049$; Suppl., 7.d.i). Using the proportion of correct trials as the outcome measure also resulted in a significant effect of perceptual discrimination ($F(2, 110) = 11.78, p < .001, R^2_{adj} = .16$; PD: $\beta = .266, SE = .095, p = .006$; Suppl., 7.d.ii). Executive functions explain individual differences in Yes/No performance.
We predicted that executive function composite score, a proxy for strategic retrieval ability, would be the primary factor explaining individual differences in Yes/No performance in older adults.

Model selection. Details for all models can be found in Table 5. The addition of the PD in Model 1 did not improve upon the control Model 0 for Yes/No d' scores ($F<2, p>.2$). In contrast, the executive functioning predictor in Model 2 increased the amount of variance explained significantly compared to Model 0 ($F(1,110)=9.67, p=.002$). Model 1 with the PD predictor alone could also be significantly improved after adding the executive functioning regressor ($F(1,109)=7.15, p=.004$), even to the expense of model simplicity. Taken together, the model comparison metrics in Table 6 and our data-driven model selection methods (Suppl., 7.a, b) support Model 2 as the best model for Yes/No performance. The final model therefore includes both age and executive functioning and is described by the regression equation $YN \ d' = 2.68 - .02 \times Age + .20 \times Executive \ Function$.

Table 5. Coefficients for all models for $YN \ d'$ in older adults.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Model 0</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$F(df)$</td>
<td>R^2_{adj}</td>
<td>$F(df)$</td>
<td>R^2_{adj}</td>
</tr>
<tr>
<td>Age</td>
<td>13.52 (1,111)</td>
<td>.10</td>
<td>7.42 (2,110)</td>
<td>.10</td>
</tr>
<tr>
<td>PD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- .33 .09 < .001</td>
<td>- .28 .10 .005</td>
<td>- .29 .09 < .001</td>
<td>- .27 .10 .006</td>
</tr>
<tr>
<td>EF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.111 .10 .258</td>
<td></td>
<td>.05 .10 .639</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.27 .09 .002</td>
<td>.26 .09 .004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All models were significant at $p<.001$. $SE=$standard error of the mean. EF: executive functioning composite; PD: perceptual discrimination composite. *$p<.05$, **$p<.01$, ***$p<.001$.

Table 6. Comparisons of model fit measures between models of interest for Yes/No performance.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>AIC</th>
<th>BIC</th>
<th>RMSE</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1 – Model 0</td>
<td>.68</td>
<td>3.41</td>
<td>-.01</td>
<td>.00</td>
</tr>
<tr>
<td>Model 2 – Model 0</td>
<td>-7.59</td>
<td>-4.86</td>
<td>-.04</td>
<td>.07</td>
</tr>
<tr>
<td>Model 2 – Model 1</td>
<td>-8.27</td>
<td>-8.27</td>
<td>-.03</td>
<td>.07</td>
</tr>
<tr>
<td>Model 3 – Model 1</td>
<td>-6.50</td>
<td>-3.77</td>
<td>-.03</td>
<td>.06</td>
</tr>
<tr>
<td>Model 3 – Model 2</td>
<td>1.77</td>
<td>4.50</td>
<td>.00</td>
<td>-.01</td>
</tr>
</tbody>
</table>

Note: Metrics for the second model listed are subtracted from the first model. AIC: Akaike Information Criterion. BIC: Bayesian Information Criterion. RMSE: Root Mean Square Error. Positive values for R^2_{adj} indicate that the model on the left-hand side outperformed the model on the right-hand side of the equation (e.g. Model 1 explains more variance than Model 0). Negative values for AIC, BCI and RMSE indicate better fit for the model on the left-hand side of the equation. Model 0: age. Model 1: age, executive functions. Model 2: age, perceptual discrimination. Model 3: age, executive functions, perceptual discrimination.

We then controlled for the influence of FC scores on YN to account for familiarity-based memory performance. Indeed, the effect of executive functioning remained significant in a model with age, EF and PD as regressors ($F(3,109)=3.62$, $p=.015$, $R^2_{adj}=.07$; EF: $\hat{\beta}=.212$, $SE=.080$, $p=.009$; Suppl., 7.d.iv).

Sensitivity analyses. When the proportion of correct trials was used as the outcome variable, the effects of age and EF were the same as for d' ($F(2,110)=13.30$, $p<.001$, $R^2_{adj}=.18$; EF: $\hat{\beta}=.292$, $SE=.087$, $p<.001$; Suppl., 7.d.iii). The finding that executive functioning explained much of the variance in Yes/No performance could also be reproduced when using only Trails B or Digit Span Total but not Verbal Fluency as predictor (Suppl., 7.d.v.).
Perceptual discrimination and executive function show a divergent pattern of dominance in Forced Choice and Yes/No models. To establish dominance between predictors, the contribution of each predictor towards explaining variance in the criterion was compared across all possible model subsets containing any combination of age, perceptual discrimination and/or executive function. Within our sample, the PD regressor had complete dominance over the EF predictor. We then used the bootstrap samples to test whether this finding was generalisable beyond our sample.

Generalisability of dominance metrics was determined 1) with the proportion of bootstrap samples replicating the effect in our data and 2) by way of calculating mean dominance metrics across all bootstrap samples. In every sample, the comparison of regressors A and B obtained a value of 0, 1 or .5 depending on whether predictor B, A or neither explained more variance than the other in the criterion, respectively. The mean dominance metric across all bootstrap samples can take on any value between 0 and 1.

The pattern of complete dominance of PD vs. EF was reproduced in 77% of bootstrap samples. As shown in Figure 4a, the standard errors of the comparison of PD>EQ was above the .5 neutral line ($M=.85$, $SD=.30$), indicating that the PD predictor had complete dominance over EF.

For the Yes/No model, the analysis established complete dominance of executive functioning over perceptual discrimination in our sample. This pattern of complete dominance was reproduced by 82% of bootstrap samples. Moreover, Figure 4b shows that the standard error of the mean complete dominance metric for the comparison of PD>EF was well below the .5 line ($M=.12$, $SEM=.27$). These findings suggest that complete dominance of EF over PD in predicting Yes/No performance is generalisable beyond our sample. That is, in all possible subsets of Yes/No models, executive functioning contributed more to the proportion of variance explained than did the perceptual discrimination composite scores.
Discussion

The current study investigated the contribution of individual differences in perceptual discrimination and executive functions to mnemonic discrimination of perceptually similar objects in cognitively unimpaired older adults. Moreover, it revealed how these two factors impact performance depending on key experimental design parameter, namely recognition memory test format. These investigations yielded three key findings. First, we replicate previous observations of age-group differences in Yes/No and Forced Choice recognition memory tasks with high target-foil similarity (Trelle et al., 2017) and in perceptual discrimination tests under conditions of high feature overlap (Ryan et al., 2012). We extend these findings providing evidence for effects of chronological age on both memory and high
ambiguity perception within the older group. Second, using both data-driven and hypothesis-driven individual differences analyses, we provide evidence for contributions of high ambiguity perceptual discrimination and executive function to individual differences in mnemonic discrimination in a large cohort of older adults. Finally, we demonstrate that the relative importance of each factor differs as a function of test format, such that perceptual discrimination best explains Forced Choice performance, whereas executive function best explains Yes/No performance. Collectively, these results significantly extend our understanding of the factors that contribute to individual differences in mnemonic discrimination among older adults. These results are critical given the potential utility of mnemonic discrimination tasks in clinical contexts.

Our finding of age-related deficits in the Yes/No task is in line with a plethora of other studies demonstrating significant impairments in recollection and mnemonic discrimination in older adults (Cohn et al., 2008; Koen & Yonelinas, 2014; Reagh et al., 2016, 2018; Stark & Stark, 2017; Trelle et al., 2017; Yassa et al., 2011). Here we demonstrate that although both perceptual discrimination and executive function were correlated with Yes/No performance, executive function emerged as the best predictor of individual differences in Yes/No performance. While sufficient representational quality is undoubtedly a prerequisite for the availability of item details that can be diagnostic for recognition, they were insufficient to explain deficits in this task. This is consistent with behavioural and lesion studies which have shown that frontally-mediated cognitive control is essential for high performance on tasks that require recall as opposed to traditional recognition (Jacoby, 1991; Johnson, O’Connor, & Cantor, 1997; Parkin, Yeomans, & Bindschaedler, 1994; Yonelinas, 2002). In the context of this task, older adults, and those with poor executive function in particular, may have had difficulty implementing effective retrieval strategies, such as recall-to-reject, which is known to exert significant demands on cognitive control (including
individual differences in false recognition in ageing

working memory maintenance and evaluation processes), and which is critical for
minimizing false alarms to lures (Cohn et al., 2008; Gallo et al., 2006; Migo et al., 2009;
Trelle et al., 2017). This possibility is consistent with the observation that age-related
reductions in target-foil discriminability in our Yes/No task were driven by an increase in
false alarms for older adults.

The observation that Yes/No performance was related to executive function is also
compatible with prior work demonstrating that individual differences in delayed recall scores
explain variance in Yes/No mnemonic discrimination in older adults (Bennett, Stark, & Stark,
2018; Migo et al., 2014; Stark, Yassa, & Stark, 2010; Toner et al., 2009). Importantly,
neuropsychological tests of delayed recall (e.g., word list recall) are known to rely on both
hippocampal-dependent pattern completion and PFC-dependent strategic retrieval processes
(Chang et al., 2010; Dolan & Fletcher, 1997). The observed effect of executive function on
performance in the present study may index PFC-mediated aspects of recall that likely also
contribute to that relationship, in addition to hippocampal-mediated effects.

It should be noted however that evidence for the role of executive functions in mnemonic
discrimination is mixed, with some studies failing to identify consistent effects across
neuropsychological tasks (Toner et al., 2009), observing only trend-level correlations
(Davidson et al., 2019), and others suggest that executive functions impact performance
(Trelle et al., 2017). These mixed findings may have been due to the smaller samples in these
studies (~N=20-40 older adults). Indeed, our study includes one of the largest samples in the
literature on individual differences in mnemonic discrimination, thereby likely increasing the
ability to detect relationships between executive functions and memory performance. The
present findings suggest that executive function can impact mnemonic discrimination, and
future work aimed at isolating MTL-dependent processes using mnemonic discrimination
tasks might benefit from minimising strategic retrieval demands, or accounting for variance related to executive function within the target population.

Our results also suggest that mnemonic discrimination deficits in older adults arise not only due to factors associated with strategic retrieval demands. Specifically, we demonstrate age-related decline in Forced Choice performance (replicating work by Trelle et al., 2017), a test format that is known to minimise demands on hippocampal-mediated retrieval (e.g. pattern completion; Holdstock et al., 2002; Migo et al., 2009) including strategies such as recall-to-reject (Guerin et al., 2012; Migo et al., 2009; Trelle et al., 2017). Consistent with this idea, executive function was not a significant predictor of FC performance, whereas perceptual discrimination of stimuli with overlapping features explained significant variance. These results complement and extend our prior work examining group differences in high ambiguity perception in relation to Forced Choice mnemonic discrimination (Trelle et al., 2017), but here using a different perceptual discrimination measure known to assay MTL perceptual processing (Barense et al., 2010; Lee et al., 2005).

To our knowledge, this study is the first to establish a continuous relationship between individual differences in high ambiguity perceptual discrimination and mnemonic discrimination performance in healthy older adults. We interpret this relationship in terms of common representational demands across perceptual and mnemonic tasks that require disambiguating stimuli with overlapping features, such that poorer perceptual discrimination performance indexes reduced availability of complex, conjunctive stimulus representations supported by the MTL (Barense et al., 2007; Bussey & Saksida, 2005; Kent et al., 2016). Such representations should be critical for performance across both Forced Choice and Yes/No format. Indeed, perceptual discrimination scores correlated with performance across test formats, but were the dominant predictor only in the Forced Choice model. In contrast, perceptual discrimination scores were not retained in the final Yes/No model when
accounting for executive functioning. Our results suggest that while the availability of complex perceptual representations is important for minimising false recognition, the degree to which this factor is the key driver of memory performance depends on the extent to which the task incurs additional cognitive demands, such as demands on controlled retrieval processes.

These data also add to a growing body of evidence demonstrating that perceptual discrimination is impacted with age under conditions of high feature ambiguity (Burke et al., 2012; Ryan et al., 2012), and further support the idea that age-related declines in perceptual processing are critically linked to age-related declines in episodic memory, perhaps because these processes rely on common representations formed by the MTL (Barense et al., 2007; Bussey & Saksida, 2005; Kent et al., 2016). Older adults with coarser representations likely have poorer pattern separation (Berron et al., 2016; Kent et al., 2016; Yassa, Mattfeld, Stark, & Stark, 2011; Yassa & Stark, 2011) and must rely more on single features or simple feature conjunctions to distinguish stimuli (Burke et al., 2012; Newsome et al., 2012; Reagh & Yassa, 2014; Ryan et al., 2012). The result is an increase in feature interference between previously viewed and novel stimuli with overlapping features (Barense et al., 2012; Johnson et al., 2016), impairing discrimination accuracy, both in the context of perceptual tasks and memory tasks. Consistent with this interpretation, prior work from our lab (Trelle et al., 2017) and others (Newsome et al., 2012) have demonstrated that reducing feature-level interference can improve Forced Choice mnemonic discrimination and perceptual discrimination accuracy in older adults.

Although we interpret the present results primarily in terms of representational quality (i.e., ability to resolve interference between objects with overlapping features), and executive function (i.e. ability to engage processes that support maintenance and evaluation of these representations), they can also be interpreted in terms of differential contributions of
familiarity and recollection processes to performance across test formats. Specifically, prior work suggests that Forced Choice performance, when allowing for direct comparison of targets and corresponding foils, can be supported by cortical familiarity signals, whereas a Yes/No test requires hippocampal-dependent recollection (Holdstock et al., 2002; Migo et al., 2009; Norman, 2010; Trelle et al., 2017). As we did not collect data regarding response strategies during retrieval, we cannot draw strong conclusions regarding the strategies employed across test formats in the present study. Importantly, our results suggest that the success of a strength-based familiarity signal may be linked to the availability of stimulus representations that can effectively disambiguate perceptually similar targets and foils. This may explain why the presence of age-related differences in tasks that can be supported by stimulus familiarity often depends on target-foil (Bastin & Van der Linden, 2003; Koen & Yonelinas, 2014; Trelle et al., 2017; Yonelinas, 2002).

Regardless of the framework chosen, it should be noted that Forced Choice and Yes/No tasks are unlikely to be “process pure”, meaning that scores on both tests almost certainly involve a combination of trials where item details were recollected and those where items were recognised without recall of specific features. Nevertheless, we argue that the difference in task demands renders our contrast of FC and YN formats capable of teasing apart age-related decline in the availability of stimulus representations that can support discrimination performance, versus the ability to effectively access and utilise these representations to support performance. This is predicated on the findings of prior studies, which demonstrated that the provision of retrieval support in a Forced Choice task enhances discrimination performance, at least in part by increasing the accessibility of stored representations (Guerin et al., 2012; Migo et al., 2009), and is consistent with the significant increase in performance observed across age groups in the Forced Choice test relative to the Yes/No test in the present study and in past work (Trelle et al., 2017). Most importantly, our interpretation of
representational quality as a key factor predicting Forced Choice performance due to the provision of retrieval support holds whether participants relied on a strength-based familiarity signal or were simply able to recall item details less effortfully without the need to engage strategic retrieval processes.

It is possible that the perceptual discrimination measure used here is also not process-pure, and may be influenced by other factors. For example, lower-level perceptual processes could contribute to impairments in more complex visual discrimination tasks. Behavioural evidence suggests an association between low-level perceptual processes, such as visual acuity and contrast sensitivity, and the accuracy of mnemonic discrimination of highly similar targets and foils (Davidson et al., 2019). Neural evidence further points to age-related dedifferentiation in earlier visual regions that feed into the MTL (Bowman, Chamberlain, & Dennis, 2019; Carp, Park, Polk, & Park, 2011; McDonough, Cervantes, Gray, & Gallo, 2014; Payer et al., 2006; Trelle et al., 2019). Critically, we controlled for individual differences in simple visual discrimination ability in our high ambiguity measure by computing a difference score (e.g., Object High – Low). Thus, it is unlikely that deficits in basic perceptual processing were the main cause of the age effect on perceptual discrimination in the present data. Together with past work, the present findings underscore the relevance of perceptual processing on mnemonic processing in cognitive aging.

Similarly, it is possible that perceptual discrimination deficits in older adults were due to deficits in executive functioning given the working memory component of oddity tasks. Critically, the present study measured both of these factors, providing an opportunity to explore this question directly. Indeed, we observed a significant correlation between executive function and perceptual discrimination in the present sample. Critically, however, we were able to include both measures in our regression analyses. If observed effects of perceptual discrimination were driven by executive functions, EF should have emerged as the
primary predictor of Forced Choice performance. In contrast, both the model selection
procedure and the dominance analysis showed that PD, but not EF was chosen as the defining
predictor for Forced Choice performance. Together, the present results highlight the
relationship between perceptual and mnemonic discrimination in the Forced Choice test
format, but also indicate that executive functioning impacts many cognitive domains and is
an important factor to consider in cognitive aging research.

In summary, our study provides novel insights into the cognitive factors that explain
individual differences in mnemonic discrimination ability in healthy older adults. Notably,
the present study focused on relatively less explored factors outside the realm of MTL-based
mnemonic functions by also considering the perceptual processes supported by the MTL and
by taking into account extra-hippocampal retrieval processes. These findings highlight the
importance of both representational quality and strategic retrieval in mnemonic
discrimination in healthy ageing. That is, older adults do not only struggle with controlled
retrieval of memory content, but they also face the challenge of operating on less distinctive
stimulus representations. Our large sample allowed us to examine the relative contribution of
these two factors by contrasting test formats with differential demands on strategic retrieval.
Both hypothesis- and data-driven methods clearly converged to support a greater role of
perceptual discrimination abilities in explaining Forced Choice, and a greater role of
executive function in explaining Yes/No performance.

These findings provide compelling evidence that multiple factors contribute to age-
related decline in mnemonic discrimination, and their influence depends on key experimental
design decisions such as test format. They also highlight the presence of considerable
variability in both memory and perceptual discrimination performance, even within a sample
of cognitively unimpaired older adults. That is, although older adults perform worse on
average than younger adults, there is significant overlap in the distributions of performance
Running head: Individual differences in false recognition in ageing

across groups. Understanding what drives this variability is critical, not only with respect to better characterising cognitive ageing, but also in light of evidence that impaired performance on these types of tasks could signal increased risk of underlying preclinical AD pathology adults (Rentz et al., 2013; Webb et al., 2020). While additional work is needed to explore the neuroanatomical basis of differences across test formats, the present findings represent important initial steps towards developing a deeper understanding of individual differences in mnemonic discrimination in older adults.

References

Bastin, C., & Van der Linden, M. V. (2003). The contribution of recollection and familiarity
to recognition memory: A study of the effects of test format and aging.

individual differences in false recognition in ageing

Running head: Individual differences in false recognition in ageing

https://doi.org/10.1016/j.neuroimage.2010.04.267

Running head: Individual differences in false recognition in ageing

https://doi.org/10.1093/geronb/gby130

Running head: Individual differences in false recognition in ageing

Running head: Individual differences in false recognition in ageing

pattern separation (BPS) in humans: Data from healthy aging and mild cognitive
impairment. *Neuropsychologia, 51*(12), 2442–2449.
https://doi.org/10.1016/j.neuropsychologia.2012.12.014

separation performance associated with healthy aging in humans. *Learning and
Memory, 17*(6), 284–288. https://doi.org/10.1101/lm.1768110

Straube, B. (2012). An overview of the neuro-cognitive processes involved in the encoding,
consolidation, and retrieval of true and false memories. *Behavioral and Brain Functions,

https://doi.org/10.1101/lm.1315109

representational quality and strategic retrieval processes contribute to age-related
increases in false recognition. *Journal of Experimental Psychology: Learning Memory

differences in representational quality and strategic retrieval processes. *Neurobiology of

NeuroImage Beta-amyloid burden predicts poorer mnemonic discrimination in
cognitively normal older adults. *NeuroImage, 221*(April), 117199.
https://doi.org/10.1016/j.neuroimage.2020.117199

deficits linked to circuit-specific disruptions in the hippocampus. *Proceedings of the National Academy of Sciences, 108*(21), 8873–8878.

https://doi.org/10.1006/jmla.2002.2864
Running head: Individual differences in false recognition in ageing